快捷搜索:

科学知识

当前位置:betway必威官网手机版 > 科学知识 > betway必威官网手机版:除却董小姐的钛酸锂,锂

betway必威官网手机版:除却董小姐的钛酸锂,锂

来源:http://www.abirdfarm.com 作者:betway必威官网手机版 时间:2019-08-30 10:07

近日,斯坦福大学的戴宏杰研究组在《自然》发表论文,宣布研发出了充电极快、寿命超长的铝离子电池,引起了广泛关注。比起耳熟能详的“锂电池”,人们对铝离子电池的感觉要陌生得多。为什么要研发这样的新电池?这还得从充电电池的发展说起。

betway必威官网手机版:除却董小姐的钛酸锂,锂电瓶知识。目录:

电化学储能技术是解决电动汽车与可再生能源并网发电的关键。以有机溶剂为电解液的锂离子电池在能量密度上具有优势,但存在安全隐患和锂资源有限的问题。与之相比,水系非锂离子(如钠离子、钾离子、锌离子、镁离子等)电池具有高安全和低成本等优点,在储能领域中具有重要应用前景。自2013年以来,中国科学院宁波材料技术与工程研究所动力锂电池工程实验室前瞻布局了非锂离子电池的新概念电池研究,在水系离子新概念电池基础研究上取得了系列进展 (Scientific Reports 2013, 3, 1946; ChemSusChem 2014, 7, 2295; betway必威官网手机版:除却董小姐的钛酸锂,锂电瓶知识。Advanced Energy Materials 2015, 5, 1400930; Scientific Reports 2015, 5, 18263; Nature Communications 2016,7, 11982)。但水系离子电池的循环寿命比较有限,一般小于1000次,难以满足规模储能的需要。2015年美国斯坦福大学教授戴宏杰在Nature (2015, 520, 324) 报道了一种新型铝离子电池,因其耐用、低可燃性及成本等特点,而引起学界和工业界的广泛关注。

近日,中国科学院深圳先进技术研究院(以下简称深圳先进院)唐永炳研究员及其团队研发的新型高储能、低体积电池技术在国际能源材料顶级期刊《先进能源材料》上发表。该刊匿名审稿人称,这是一种“让人惊奇,是从未报道过的新电池技术”。 据介绍,唐永炳发明的铝—石墨双离子电池,是一种全新的高效、低成本储能电池。这种新型电池,用石墨取代锂电池里的锂化合物,作为正极材料,用铝箔作为负极材料和负极集流体。电解液则由常规锂盐和碳酸酯类有机溶剂组成。 该新型电池在充电过程中,正极石墨发生阴离子插层反应,而铝负极发生铝-锂合金化反应,放电过程则相反。这种新型反应机理,不仅可以显着提高电池的工作电压,同时大幅降低电池的质量、体积、及制造成本,从而全面提升全电池的能量密度(~220 Wh/kg)。 “如果使用这种新型电池,未来的手机可能会比现在再轻薄一半,同时智能手机再也不需要一天一充电。”先进院介绍,这项电池实现产业化后,将能解决电动汽车电池成本高昂以及续航里程短的问题。 近年来,新能源汽车在政策的支持下风靡全球,行业上游也在诸多利好下迎来爆发,全球产量居前的龙头电池厂纷纷在华设厂。但是商用锂离子电池的能量密度低,制造成本较高,且电池的电极材料含有毒金属,电池废弃会造成严重的环境问题。更重要的是,锂电池目前在成本和续航里程方面均遇到了瓶颈。 “500kg的铝-石墨电池的续航里程可达到约550公里。”先进院工作人员表示,同等重量的普通电动汽车电池,续航里程最多只有400多公里。与传统锂电技术相比,铝-石墨电池具不仅生产成本降低约40%-50%,能量密度提高至少1.3-2.0倍。“该新型电池技术如实现产业化,将有望改变现有锂电产业格局

华为宣布即将投产新研发出的石墨烯锂电池,充电速度比普通手机快10倍;董小姐声称用了钛酸锂电池,雾霾天气将会减少一半。..。..这些电池前沿技术在过去的一年被炒的火热,各种媒体报道铺天盖地,到底是噱头还是黑科技? 是否真的有希望取代锂离子电池?别着急,且看下文,老司机带你看懂十大电池黑科技,妈妈再也不用担心我们被骗了!

初中时,我有一部黄色的随身听。我给它准备了3对充电电池轮番上阵,这样,当周杰伦的声音突然变得缓慢时,我知道总有电池可以更换。后来,我有了MP3和手机,就渐渐不再听随身听了,需要经常充电的,也从圆柱形的5号电池换成了扁扁的锂电池。在我看来,世上无法逃避的事情,除了死亡和交税,还有给电池充电。

  • 锂电池与锂离子电池
  • 电池组成部分
  • 电池参数
  • 工作原理
  • 充电过程
  • 安全标准
  • 电池衰老

受该工作启发,宁波材料所动力锂电池工程实验室开展了以石墨烯为电极的铝离子电池研究,近期研究工作以Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery 为题在线发表于《先进能源材料》(Advanced Energy Materials,DOI: 10.1002/aenm.201700034)。在该工作中,科研人员采用量产的多层石墨烯(由宁波墨西科技有限公司生产提供)为柔性正极、金属铝为负极、离子液体为电解液,构建出具有超长循环寿命和超高倍率性能的2 V铝离子电池。研究发现二维片状石墨类负极材料的厚度和横向尺寸均对AlCl4-离子的嵌入行为有重要影响。相对于层数达千层的鳞片石墨,多层石墨烯的层数极少,可以显著降低AlCl4-离子嵌入和扩散的活化能,使得该电池具有超高的倍率性能,因此可在1分钟内完成充放电。另一方面,由更大尺寸的多层石墨烯制作的电极,由于具有更好的柔韧性和石墨化度,对AlCl4-离子的重复嵌入和脱出具有更强的耐受能力,从而让电池表现超长的循环寿命,充放电循环10000次后容量几乎无衰减。此外,该研究工作通过一系列的精细表征还进一步揭示了AlCl4-离子在多层石墨烯、石墨等二维石墨类正极材料的插层化学机制,即插层离子诱导的四阶和五阶结构变化机制。该研究工作不仅对铝离子电池中石墨类正极材料的选择具有重要指导意义,还对于发展实用化石墨烯基新型长寿命储能电池具有较大的学术价值。

石墨烯电池

不是每一节电池都叫可充电电池

电池是生活中再常见不过的物品了。它进入人类世界已有200年的历史。早在1800年,意大利科学家亚历山德罗·伏特(Alessandro Volta)就发明了“伏打电堆”。伏打电堆由很多个单元堆叠而成,每个单元都有一块铜板和一块锌板,中间由一块浸有盐水的布隔开。时至今日,生活中常见的碱性电池、铅酸电池、锂电池等电池,都与古老的伏打电堆共享着同样的工作原理:通过氧化还原反应将自己储存的化学能转化为电能。

betway必威官网手机版 1描绘伏特(左)向拿破仑(右)展示伏打电堆的画作。图片来源:66south.com

这一看似神奇的过程其实并不复杂。一块电池主要由正极、负极和电解液三部分组成。当电池与外电路联通时,负极一端就开始发生氧化反应,释放出电子;正极一端则发生还原反应,正好需要补充电子。由于电解液将两极隔开,只允许离子流动,不允许电子流动,于是电子通过外电路从负极流向正极,形成电流做功,化学能也藉此转化成了电能。

betway必威官网手机版 2原电池示意图。阳极(Anode)与阴极(Cathode)与外电路连接,浸泡在电解液中,电池工作时,电流从阴极流向阳极。因此此处,阳极和负极是同一电极,阴极与正极是同一电极。图片来源:Arumugam Manthiram, Smart Battery MaterialsIn, CRC Press, 2009, pp. 8.

但如果用一次性电池为随身听供电,那么一张专辑刚刷几遍,电池就该扔了。一次性电池的电化学反应是不可逆的,也就是说,化学能转化为电能的旅程只能一条路走到黑,电量用尽,电池也没用了。能不能来一种可以重复使用的电池?

这种“得寸进尺”的需求,最终促成了世界上最早的可充电电池——铅酸电池的诞生。它由法国物理学家加斯顿·普兰特(Gaston Planté)于1859年发明。可充电电池采用的是可逆的电化学反应,只要施加外电压,改变电子流动的方向(从正极流向负极),电池两极就会发生与放电时方向相反的化学反应,仿佛“返老还童”,最终重新充满电力。

这项发明影响之深远令人不服不行——时至今日,人们在启动汽车引擎时使用的蓄电池依然是铅酸电池。铅酸电池的负极与正极分别采用海绵铅及二氧化铅,电解液使用稀硫酸。它可以提供很大的电流,价钱也不贵,但就是体积太大了些。

betway必威官网手机版 3普兰特和他发明的铅酸电池。图片来源:bb-batteryasia.com

铅酸电池做不到面面俱到?没关系,后面还有一堆科学家跃跃欲试呢。此后,研究者们又不断探索,发明出采用其他化学反应的充电电池,如镍镉电池、镍氢电池和锂电池。它们能量密度更大,体积更小,可以用于为各类小型电子设备提供电能。

锂电池、锂离子电池、锂聚合物电池

上述研究工作得到了中科院重点部署项目(KGZD-EW-T08-2)、中科院青促会项目、国家自然科学基金和浙江省自然科学基金(LY15B030004)的资助。

betway必威官网手机版 4

青出于蓝的锂离子电池

之前说到,电池工作时,电子通过外电路从负极流向正极。与此同时,相同电荷量的正离子则在电池内部从负极向正极流动。早期的电池都使用诸如稀硫酸这样的以水为溶剂的电解液。在这种情况下,电池内肩负维持电荷平衡任务的是氢离子。然而,使用水系电解液的电池,最多能达到的工作电压也不过2伏左右。如果我们想要获得更高的电压,输出更大功率,就要使用不含水的电解液,找到替代氢离子的正离子。

查看元素周期表,最佳的候选者落在了锂离子身上:作为3号元素,锂的原子量只有6.9;它既轻又小,比其他大的离子更容易在电解液中移动,可谓不二之选。确定了锂离子,接下来的任务,就是找到可以与之发生可逆反应的电极材料了。到20世纪70年代,美国化学家斯坦利·惠廷厄姆(M. Stanley Whittingham)在埃克森(Exxon)工作时率先发明了锂离子电池。经过多年优化,商业化的可充电锂离子电池在20世纪90年代初在日本推出。

betway必威官网手机版 5斯坦利·惠廷厄姆目前仍是下一代锂电池设计的重要研发者。图片来源:binghamton.edu

锂离子电池的负极使用石墨,正极使用钴酸锂,电解液则使用含有锂盐(如六氟磷酸锂)的有机溶剂。放电时,嵌入在石墨负极中的锂被氧化进入电解液,跑到正极嵌入到氧化钴的晶格间隙中形成钴酸锂;充电时,锂则从钴酸锂中脱嵌,溜回石墨中,如此循环往复。这样的电池,工作电压可达到3.7伏以上,能量密度大大提高。

但所谓金无足赤,尽管锂离子电池大获成功,也免不了还有缺点——比如价格较高,容量流失,以及最严重的安全性不高的问题。锂离子电池电解液使用的有机溶剂十分易燃,虽然我们可以通过加入添加剂和改进电池设计来提高电池的稳定性,却终究不是长久之计。


该研究工作第一作者张乐园目前正在美国德克萨斯大学奥斯汀分校攻读博士学位。

什么是石墨烯电池?严格定义的石墨烯是由碳原子组成的单层石墨,是只有一个碳原子厚度的六角型呈蜂巢晶格的平面薄膜,具有非常好的导热性、电导性、透光性,而且强度高、超轻薄、比表面积超大。

厚望加身的铝离子电池

原理上,我们只要用另一种X离子来替代锂离子,并找到与之匹配的电极和电解液,就可以得到“X离子电池”。在众多“X”的候选者中,铝算是优势比较明显的:它的价格比锂更低,化学性质也更稳定,而且在反应时,每个铝原子可以释放3个电子,似乎是个不错的选择。

然而,研发铝离子电池的道路并不顺利。最大的困难在于找到合适的正极材料和电解液。在以往的研究中,正极材料往往会在充放电过程中发生不可逆的结构破坏,能有效参与反应的部分因而越来越少。最终,电池容量迅速下降,使用寿命只有几十个循环——这显然不能满足人们的需求。

在研究者们锲而不舍的努力之下,上月,铝离子电池终于迎来了大突破。斯坦福大学化学系的戴宏杰教授在《自然》发文宣布,他的研究小组成功制造出了超长寿命的铝离子电池。

betway必威官网手机版 6戴宏杰(右)和文章的共同第一作者之一龚明(左)图片来源: Mark Shwartz/Stanford Precourt Institute for Energy

这种电池选用铝金属作为负极,正极则是一种三维结构的泡沫石墨。秘制电解液由有机盐 [EMIm]Cl(1-ethyl-3-methylimidazolium chloride) 和 AlCl3 按一定比例混合制成的离子液体。负责在电解液中转移电荷的离子是 AlCl4-。电池放电时,铝负极被氧化生成 Al2Cl7-,同时释放电子;本来嵌入在泡沫石墨正极孔隙中的 AlCl4- 则脱嵌进入电解液。充电时,电解液中的 AlCl4- 则重新嵌入到泡沫石墨孔隙当中。因为 AlCl4-离子的体积较大,因此找到一种可以允许它快速嵌入/脱嵌的的正极材料颇为关键。研究人员巧妙地制备了泡沫石墨——它内部充满空隙,表面积很大,让AlCl4-离子可以快速自由地进出。

betway必威官网手机版 7以泡沫镍为模板,研究者先用化学气相沉积法在它的表面沉积上石墨,再覆盖上一层聚合物PMMA;接着用相应溶剂将泡沫镍和PMMA相继溶解,得到三维结构的泡沫石墨。用普通非泡沫热解石墨做正极的话,铝离子电池的充放电速率只有使用泡沫石墨时的75分之一。图片来源:参考文献[1]

在经过惊人的7500次充放电循环后,这些铝离子电池的容量几乎没有损失,工作电压也稳定在2伏左右。除了寿命长,这种铝离子电池功率密度也很高(3000W·kg–1),可以在一分钟内充满电。此外,它们柔性极好,可以随意弯曲;安全性能也超棒,哪怕用电钻将它钻穿,也不会影响它正常工作。

betway必威官网手机版 8锂离子电池被戳开一个洞很可能带来严重的后果,但用钻头(Drill)钻穿戴宏杰研究组的铝离子电池,电池依然能正常工作。图片来源:stanford.edu

  • 金属锂电池:跟普通干电池的原理一样,它是用金属锂作为负极,通过金属锂的腐蚀或叫氧化来产生电能的,这种电池循环性能不好,在充放电循环过程中容易形成锂结晶,造成内部短路,一般情况下这种电池是禁止充电的。锂是一种高度活跃的金属,它使用时不安全,经常会在充电时出现燃烧、爆裂的情况,后来就有了改进型的锂离子电池,加入了能抑制锂元素活跃的成份(比如钴、锰等等)从而使锂电真正达到了安全、高效、方便,而老的锂电池也随之基本上淘汰了
  • 锂离子电池:1992年日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。中间填充非水液态有机电解质以形成离子游离的通道,用隔膜来分离正负极防止短路
  • 锂离子聚合物电池:用聚合物来凝胶化液态有机溶剂,或者直接用全固态电解质。锂离子电池一般以石墨类碳材料为负极

betway必威官网手机版 9

广义的石墨烯包括双层石墨烯、多层石墨烯、3D石墨烯、石墨烯氧化物、量子点石墨烯等。因微观构造和表面官能团的不同,其性质也有很大差异。市场上多数石墨烯产品都是按照此类划分,为多层石墨结构。

取而代之?

说了这么多优点,这样的铝离子充电电池什么时候能走进我们的生活?

恐怕还早得很。

目前,它的工作电压只有锂离子电池的一半,能量密度也只有 40 Wh·kg–1,与铅酸电池相当,还不到锂离子电池的三分之一,所以大家应该还没法在智能手机、笔记本电脑或电动汽车里看到它。除了性能的提高还潜力很大之外,这些铝离子电池的生产成本也有待降低——它的电解液使用离子液体,价格较高;用于制备泡沫石墨正极的化学气相沉积法也不便宜、是很难投入大规模生产的工艺。要达到“物美价廉”,研究者们还有很长的路要走。

但不管怎样,铝离子电池在使用寿命、功率密度和安全性方面的性能依然优越,如果未来可以降低生产成本,它们将会十分适合用于在对能量密度要求不高的地方发挥作用。比如在电网储能系统中,它们能为太阳能和风能等可再生能源储能,还能作为家用大型电池,为电动车充电,或是在停电时为电器供电。

一旦科学家能够研发出比泡沫石墨更好的正极材料,进一步提高铝离子电池的工作电压,它的用途将更加广泛。随身听走了,MP3也快走了,科技产品一代又一代地从我们的生活中出现又淘汰,电池和研究电池的人却一直还在。之后还会有怎样的电池惊艳我们的生活?给装备充好电,拭目以待吧。

(编辑:Calo)

果壳网已经加入《自然》出版集团媒体分享白名单,点击文中的论文链接即可免费阅读全文。

 钢壳/铝壳/圆柱/软包装系列组成部分:

采用石墨烯柔性电极和石墨涂层电极的铝离子电池放电模型

石墨烯产品在电池中的应用,在理论上有许多设想和研究方向,比如石墨烯导电浆料添加至正极,涂于或直接用作隔膜,用作或包裹负极材料等,以磷酸铁锂电池为例,具体地展示了石墨烯在电池产品中的应用场景。市场上习惯把运用了石墨烯材料的电池概称为石墨烯电池,而不特指用作负极的电池,不是严格意义上的石墨烯电池。

参考文献:

  1. Lin, Meng-Chang, et al. An ultrafast rechargeable aluminium-ion battery. Nature (2015).
  2. Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells 9, 209 (1990).
  3. Wessells, et al.  Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications. Electrochemical and Solid-State Letters 13, no. 5 (May 1, 2010): A59–61.
  4. Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Mater. 10, 424–428 (2011)

betway必威官网手机版 10

石墨烯粉末应用于电池领域主要有四大应用:1)正负极导电添加剂,可提升充电速度。2)石墨烯复合电极材料,如硅碳复合负极材料或包覆磷酸铁锂,能够提升电池容量。3)石墨烯功能涂层,降低电池内阻,提升电池寿命。4)石墨烯直接用作负极,理论比容量是当前石墨负极的两倍。

文章题图:techtree.com

 

 

  • 正极:活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂(俗称三元)材料,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电极流体使用厚度10--20微米的电解铝箔
  • 隔膜: 一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过
  • 负极: 活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔
  • 有机电解液: 溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液
  • 电池外壳: 分为钢壳(方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端

不同尺寸石墨烯和石墨正极中插层离子诱导的高阶结构变化机制

石墨烯与新型负极材料的结合,主要是利用石墨烯片层柔韧性来缓冲这些高容量电极材料在循环过程中的体积膨胀,同时考虑石墨烯优异的导电性能可以改善材料颗粒间的电接触降低极化,这些效用均可有效改善复合材料的电化学性能。然而,运用常规的碳材料复合技术和工艺,同样能够取得类似甚至更好的电化学性能。比如硅碳复合负极材料,相比于普通的干法复合工艺,复合石墨烯并没有明显改善材料的电化学性能。因此,石墨烯粉体材料在负极电极上的应用前景尚不明朗,石墨烯用作硅碳负极的包覆材料或许前景更为光明。

 锂离子电池参数

锂硫电池


betway必威官网手机版 11

  • 额定电压:  因为材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V
  • 充电终止电压:  一般是4.2V,磷铁3.65V,终止充电电压精度允差为额定值的±1%(例如,充4.2V的锂离子电池,其允差为±0.042V),过压充电会造成锂离子电池永久性损坏
  • 充电电流:电池充电电流应根据电池生产厂的建议,并要求有限流电路以免发生过流(过热)。一般常用的充电率为0.25~1C,推荐的充电电流为0.5C。在大电流充电时往往要检测电池温度,以防止因过热而损坏电池或产生爆炸
  • 充电温度:对电池充电时,其环境温度不能超过产品特性表中所列的温度范围。电池应在0~45℃温度范围内进行充电,远离高温(高于60℃)和低温(-20℃)环境
  • 终止放电电压:  为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V),低于厂家标注的终止放电电压继续放电称为过放,过放对电池会有损害
  • 放电电流:钴酸锂类型材料为正极的锂离子电池不适合用作大电流放电,过大电流放电时会降低放电时间(内部会产生较高的温度而损耗能量),并可能发生危险;但磷酸铁锂正极材料锂电池,可以以20C甚至更大的大电流进行充放电(C是电池的容量,如C=800mAh,1C充电率即充电电流为800mA),一般常用的充放电倍率为0.25C~1C
  • 放电温度:不同温度下的放电曲线是不同的。在不同温度下,锂离子电池的放电电压及放电时间也不同,电池应在-20℃到 60℃温度范围内进行放电(工作)
  • 额定电压:?

锂硫电池理论能量密度高达2600Wh/kg-1,是未来最具应用前景的新型二次电池之一。但其充放电过程中的中间产物在电解液中具有一定的溶解性,易扩散到负极,并与锂金属反应,造成正极活性物质损失,并腐蚀锂负极,严重影响了电池的循环稳定性,成为制约其商业化应用最关键问题。该工作借鉴了铁电材料与光催化领域的最新研究进展,简单地将铁电材料BaTiO3作为添加剂加入到正极浆料之中,利用纳米BaTiO3自发极化特性吸附同样为极性的中间产物,显著提升锂硫电池的循环稳定性。比其他思路,该方法操作简单,可无缝衔接到目前锂电池电极制造工艺之中,适合工业化生产。

工作原理

无钴高电压电池


Nano one公司宣布成功研制无钴高电压锂电池阴极材料——高电压尖晶石。该材料只含锂、锰、镍而不含钴元素,与已商业化的含钴电池材料相比,具有输出电压高,寿命长,安全性高,电池容量和放电功率大的特点,同时降低了成本、环保和供应链的风险压力。高电压电池材料重量轻、体积小和成本低的优势将在未来电动汽车和数码产品中发挥重大作用。

  • 锂离子电池的工作原理就是指其充放电原理,如下图:
  • betway必威官网手机版 12 betway必威官网手机版 13betway必威官网手机版 14
  • 充电时:正电极发生氧化反应,向外电路释放出电子和向内电路释放出锂离子。生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,同时电子的补偿电荷从外电路供给到碳负极,保持负极的电平衡, 嵌入的锂离子越多,充电容量越高.
  • 放电时: 正电极发生还原反应,从外电路获得电子和从内电路吸取锂离子。电子经过外电路和用电器被输送到正电极,与此同时,锂离子则经过内电路中的电解液和穿过隔膜纸,回到正电极的晶体结构, 回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量

锂空气电池

充电过程

betway必威官网手机版 15


锂空气电池的基本化学原理十分简单。这种电池通过锂和氧结合成过氧化锂实现放电,再通过施加电流逆转这一过程而完成充电。放电时,从负极出发的锂离子在正极与空气中的氧气反应,产生一种叫过氧化锂的固体产物,填充于碳电极的孔隙中。充电时,化学过程逆转,过氧化锂被分解释放氧气。

  • 锂离子电池的充电过程可以分为四个阶段:涓流充电(低压预充)、恒流充电、恒压充电以及充电终止,如下图
  • betway必威官网手机版 16

锂空气电池的原型其实在很早之前就已经被成功制造了出来,该电池的蓄电能力理论上是目前市场上锂离子电池的10倍,而由于锂金属在化学上具有极其不稳定性,实际应用时存在多个重大缺陷。和目前的可充电电池中盛行的锂离子技术相比,锂空气电池理论上可存储的能量要多得多。理论上这样的能量密度可使电动车续航能力接近传统汽油汽车,而且锂空气电池的成本和重量只有现在市面上销售的电动汽车所使用的锂离子电池的1/5。

  1. 涓流充电: 涓流充电用来先对完全放电的电池单元进行预充(恢复性充电)。在电池电压低于3V左右时采用涓流充电,涓流充电电流是恒流充电电流的十分之一即0.1c(以恒定充电电流为1A举例,则涓流充电电流为100mA)
  2. 恒流充电: 当电池电压上升到涓流充电阈值以上时,提高充电电流进行恒流充电。恒流充电的电流在0.2C至 1.0C之间。电池电压随着恒流充电过程逐步升高,一般单节电池设定的此电压为3.0-4.2V
  3. 恒压充电: 当电池电压上升到4.2V时,恒流充电结束,开始恒压充电阶段。电流根据电芯的饱和程度,随着充电过程的继续充电电流由最大值慢慢减少,当减小到0.01C时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA)
  4. 充电终止: 有两种典型的充电终止方法:采用最小充电电流判断或采用定时器(或者两者的结合)。最小电流法监视恒压充电阶段的充电电流,并在充电电流减小到0.02C至0.07C范围时终止充电。第二种方法从恒压充电阶段开始时计时,持续充电两个小时后终止充电过程

剑桥实验室开发出的锂空气电池模型蓄电能力约为3000瓦时/千克,是现有锂离子电池的约8倍,可循环充放电2000次左右,首次循环充放电效率高达93%,即充入电池中93%的能量在放电时都能被使用。但是至少还需10年的工作才能将该电池变为可用于汽车和电网蓄电的商业电池。

安全标准

固态锂电池


固态锂电池是一种使用固体电极和固体电解液的电池。由于固态锂电池的功率重量比较高,所以它是电动汽车很理想的电池。它的工作原理与液态电解质锂离子电池的原理相通。在构造上,全固态锂电池比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当隔膜的角色。因此,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化电池的构建步骤。

  • 对于锂离子电池安全性能的考核指标,国际上规定了非常严格的标准,一只合格的锂离子电池在安全性能上应该满足以下条件:

2016年,中科院宁波材料技术与工程研究所和物理所共同合作研发出一款全固态锂离子电池。使用Co9S8-Li7P3S11作为电解质(与液态电解液的电导率相当),Li7P3S11-SuperP作为正极,金属锂作为负极,也就是用石墨做负极,用硫化物复合电解质,为无机电解质。

    1. 短路:不起火,不爆炸
    2. 过充电:不起火,不爆炸
    3. 热箱试验:不起火,不爆炸(150℃恒温10min)
    4. 针剌:不爆炸(用Ф3mm钉穿透电池)
    5. 平板冲击:不起火,不爆炸(10kg重物自1M高处砸向电池)
    6. 焚烧:不爆炸(煤气火焰烧烤电池)

该款电池用钴酸锂做正极,4Ah的电池,这种电池的性能同样非常优异,它的能量密度是240瓦时/公斤,常温循环500次,容量还有88%多。通过了一系列针刺、过充、短路、强制放电、高温循环的实验。

电池衰老

不燃烧电池


锂离子电池在发生热失控时,放热量最多的是电解液,因此不燃烧电解液是保证电池不燃烧所要解决的最重要问题。微宏历时8年研发出了不燃烧电池技术,主要从隔膜耐高温、电解液不燃烧的主动防御,与STL智能热控流体技术的被动防御两个层面解决锂离子电池的安全困局。

  • 与其它充电电池不同,锂离子电池的容量会缓慢衰退,与使用次数有关,也与温度有关。这种衰退的现象可以用容量减小表示,也可以用内阻升高表示
  • 用钛酸锂取代石墨似乎可以延长寿命, 一块新电池,存放时间长了,容量一样下降,充满电存放的话,下降的更厉害,储存温度及充电电量与容量永久损失速度的关系如下图
  • betway必威官网手机版 17

与普通的PE隔膜相比,耐高温隔膜熔点更高,可以保证电池即便在300摄氏度的高温下也不会发生收缩,防范电池内部短路,从而避免热失控。在解决了锂离子电池内部的电解液以及隔膜的问题,相当于为不燃烧电池主动设立了防御措施。

 

STL智能热控流体技术是指将电池组浸没在液体里,利用绝缘导热液体作为绝缘、阻燃、导热性能俱佳的材料,能够在电池组内部发生细微内短路的情况下,快速隔绝热失控点,同时利用液体降低热失控点的温度,最大程度地降 低了电池组安全风险。STL除了安全以外,也能够均衡电池组内部温度差异、并利用外部循环实现更好的温度控制,同时即便电池组漏液,也能及时通过液体检测发现,安全更有保障。

不燃烧电解液与耐高温隔膜两个主动的防御措施,配合STL智能热控流体这一被动防御措施,最终实现了电池系统级别的不燃烧、高安全与高性能。

氢燃料电池

氢燃料电池是使用氢这种化学元素,制造成储存能量的电池。其基本原理是通过氢气与空气中的氧气进行非燃烧的氧化还原反应,通过催化剂实现电子与离子的分离,进而产生电流,推动汽车电机的运转。质子交换膜燃料电池是最常见的燃料电池,因此氢离子可直接穿过质子交换膜到达阴极,而电子只能通过外电路才能到达阴极。当电子通过外电路流向阴极时就产生了直流电。

目前,世界上仅有3款实现量产的氢燃料电池车,分别为丰田Mirai、本田Clarity和现代ix35/途胜Fuel Cell氢燃料电池车。

在多家欧洲车企加入氢燃料电池车的研发行列后,预测在未来十年左右的时间里迎来至少14款全新的氢燃料电池车型。由于一座加氢站大约2000万元的建设费用,加氢站的建设将是一大挑战。

燃料电池汽车,不改变用户驾驶习惯,解决了锂电池续航里程焦虑和快速补充能源的问题,在低温启动、循环寿命与回收技术上也接近内燃机的性能,被认为是下一代能源技术。根据国际能源署的展望,美国、欧洲、日本为了实现2摄氏度的温控目标,2050年燃料电池乘用车保有量将达1亿台,占比约30%。目前成本、加氢站、氢气来源是横在燃料电池面前的三座大山,需要迈过。预计市场加速向上拐点将于2020-2025年出现。

铝—石墨双离子电池

铝—石墨双离子电池,是一种全新的高效、低成本储能电池。这种新型电池,用石墨取代锂电池里的锂化合物,作为正极材料,用铝箔作为负极材料和负极集流体。电解液则由常规锂盐和碳酸酯类有机溶剂组成,是由中国科学院深圳先进技术研究院唐永炳研究员及其团队研发的。

该新型电池在充电过程中,正极石墨发生阴离子插层反应,而铝负极发生铝-锂合金化反应,放电过程则相反。这种新型反应机理,不仅可以显著提高电池的工作电压(3.8-4.6V),同时大幅降低电池的质量、体积、及制造成本,从而全面提升全电池的能量密度(~220 Wh/kg)。

据悉,500kg的铝-石墨电池的续航里程可达到约550公里,而同等重量的普通电动汽车电池,续航里程最多只有400多公里。新型电池与传统锂电技术相比,铝-石墨电池可将生产成本降低约40%-50%,能量密度提高至少1.3-2.0倍。若该电池技术能够成熟,将会对目前动力电池格局造成有力冲击。

钛酸锂电池

得到了董小姐力挺,钛酸锂电池可谓是出尽风头。钛酸锂电池未来是否会成为电池的主流也成为时下争议的焦点。那么钛酸锂电池到底什么来路又有何能耐呢?

钛酸锂电池是一种以钛酸锂为负极的可与锰酸锂、三元材料或磷酸铁锂等正极材料组成2.4V或1.9V的锂离子二次电池。钛酸锂电池可以实现6分钟快充放、循环次数可达3万次以上,这在使用与经济性上明显优于市场上常见的锂电池。钛酸锂电池在安全性能、充放电以及循环寿命等方面的显著优势,直指当今市面上其它类型动力电池的痛点。缺点在于能量密度低、胀气、价格高等,因此钛酸锂电池在业内的前景褒贬不一。

2016年工信部公布的285-291批次《道路机动车辆生产企业及产品公告》中有52款车型搭载了钛酸锂电池,当前搭载的车型以纯电动客车为主,部分乘用车企也在尝试将钛酸锂电池用于乘用车。三元锂电池、磷酸铁锂电池。未来动力电池市场,钛酸锂电池或将与三元锂电池、磷酸铁锂电池形成三足鼎立态势。

锂陶瓷电池

辉能科技研发出锂陶瓷电池,包括FLCB软板锂陶瓷电池、PLCB软包锂陶瓷电池及ELCB高体积能量密度锂陶瓷电池三款,除了ELCB系列以外,其余两款目前均已进入量产阶段。

FLCB软板锂陶瓷电池是世界上首款基于FPC软板基材的锂电池,不仅拥有极佳的动态弯曲与卷曲能力,而且厚度仅仅只有0.38mm。电池采用了不可燃的固态陶瓷电解质,因此其在受到撞击、穿刺、水浸或剪切等物理破坏时,也不会发生漏液、起火甚至是爆炸的情况,安全性能非常高。 PLCB软包锂陶瓷电池采用铝塑膜进行封装,因此容量上要比FLCB软板锂陶瓷电池大,而且与后者相同,PLCB软包锂陶瓷电池在受到物理伤害时也不会产生任何危险情况。ELCB高体积能量密度锂陶瓷电池,拥有高达810Wh/L的特色,电容量达到了目前市售锂电池的1.2~1.5倍,同时其他特性与前两款产品保持一致。

虽然目前FLCB、PLCB等技术已经相当成熟,而且也有不少产品采用这类技术如HTC One Max的电池皮套等,但由于产能问题,导致这类电池产品目前还无法出现在手机等设备上。

本文由betway必威官网手机版发布于科学知识,转载请注明出处:betway必威官网手机版:除却董小姐的钛酸锂,锂

关键词: